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ABSTRACT

Query perturbation methods offer journalists new ways of finding
leads and fact-checking the veracity of existing claims that are
made using data [12]. Existing perturbation APIs require extensive
knowledge of SQL and Python to utilize, which most data journalists
do not possess. Instead, they tend to use Pandas for data analysis.
We introduce Pert-Q-Pan, a Pandas compatible API to conduct in-
memory query perturbation. A simple interface allows users to
specify their query and the parameter space they wish to search,
which will be turned into a parallelizable execution plan behind
the scenes. Since such searches are computationally expensive, we
offer one main optimization technique not implemented in previous
literature: memoization during processing. We discuss the tradeoffs
of caching and multiprocess and benchmark our implementation
against brute-force search techniques, and with or without the use
of our caching methods.
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1 INTRODUCTION

In recent years, the field of computational journalism has emerged
and offered the advances of computer science to push forward
what is possible in the area of journalism. Research on databases
is one such area of computer science where gains involving data
management and various querying abilities can help journalists
find leads and fact-check dubious claims [9].

In the current world where data is often used to justify real-world
policy decisions, or evaluate the effectiveness of a candidate idea,
it can be difficult to discern the quality of a statistical argument. At
the same time, having the ability to explore a dataset to grow an
understanding of how particular metrics change when the input
variables are altered is integral for making better decisions, whether
that be for distributed systems management or for evaluating poli-
cies’ influence on different groups. For example, Simpson’s paradox
shows that at different aggregation levels, it is possible to arrive
at opposing understandings of a dataset. So, it is worth exploring
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different aggregation levels and parameters to create a more holistic
understanding of a dataset.

A similar problem exists when querying a database. It is possible
to arrive at an opposite conclusion simply by querying a dataset
differently, or, as is usually the case, by slightly varying the pa-
rameters in the query. For example, when analyzing a time-series
dataset, depending on the points one decides to sample, you could
arrive at very different conclusions.

Varying the parameters of a query is called query perturbation
and has been proposed as a novel technique to fact-check claims [2,
6]. This exciting development offers new tools to journalists who
have access to the underlying datasets used in making a claim. In
order to be able to conduct existing query perturbation methods
mentioned in [2], the authors developed a novel system, Perada, on
top of SQL and Python, and implemented several optimizations to
be able to run the system at scale.

At its heart, query perturbation is akin to running gridsearch to
look for the optimal parameters when fitting machine learning mod-
els to datasets. But, as is noted by the existing literature, running
such nested searches is prohibitively computationally expensive [2].
While a dataset may not be large, the search space of perturbations
may be, depending on the desired ranges of parameters to search.

The main contributions of the existing literature on query pertur-
bation is on the optimization such that running such perturbations
becomes possible. The optimizations include parallelization, intelli-
gent caching schemes for post-processing on the intermediate result
set, and being strategic in not calculating unnecessary parts of the
search space (pruning) [2]. The challenge lies in identifying and
implementing automatic optimizations that are general enough to
be useful for a large array of workloads and access patterns. Perada
does make an attempt to automate many of its offered optimiza-
tions, but relies on the user to specify the best set of optimizations
for their workload. That is, in order to take full advantage of these
optimization gains, Perada’s API requires the user to understand
the offered optimizations.

Additionally, because Perada is built on SQL, requires that the
data be in a SQL database and the user should be an experienced
programmer. Additionally, running a Spark cluster is also necessary.
These prove to be particularly complicated for those who are not
well versed in highly technical solutions. While today’s journalists
are quickly adopting new skills and technologies, the majority
of data journalists, such as those that graduate from Columbia
Journalism School’s data journalism classes, usually interact with
in-memory datasets on a single computer, either through R or
Pandas in Python. Thus, this powerful tool, query perturbation, is
out of their reach.

The aforementioned reasons give us the motivation to research
and extend the Pandas framework to support query perturbation
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in order to check the robustness of a claim or to discover new leads.
We adapted Perada to construct a Pandas compatible API that will
operate entirely in-memory, and circulate through a variety of
parameter values for a query locally [2]. One of our main goals was
to build an interface that is intuitive and simple for any working
data journalist to be able to take advantage of. With the information
provided by the user of the query template, the parameters to vary,
and the intended search space, we divide the work, and distribute
it amongst several Python processes in order to parallelize the
workload.

Since this will still be computationally expensive and therefore
time intensive, we introduce one main in-memory optimization to
run query perturbation not discussed in the original Perada imple-
mentation: caching during main stage processing. This optimiza-
tion is promising as when traversing ranges of the parameter space,
while holding one parameter constant, it is possible to reuse smaller
ranges of computations when varying a secondary parameter. We
will test on generated datasets with between 10,000 to 500,000 rows,
and 5 columns which mimics the size of some datasets that journal-
ists work with, and vary two parameters. This basic design, inspired
by a real-world dataset and journalism article that could have ben-
efited from query perturbation, gives a good base case with which
to explore multiprocessing and caching optimizations.

We discuss the trade offs of the proposed optimization. We also
benchmark and understand the run times of our system in a variety
of experiments where we vary the parallelization, and compare
the runtime footprint of execution when toggling our cache opti-
mization and our optimized system against a simple, single process,
non-optimized grid-search implementation.

In the following section, we discuss the related work on query
perturbation and caching strategies for queries. In Section 3, we
outline our approach, and in section 4, we lay out further technical
details. Section 5 discusses our experiments and findings, and finally,
Section 6 concludes and offers some directions for future work on
in-memory query perturbation systems.

2 RELATED WORK

2.1 Query Perturbation

The database field has a long history of research that is appli-
cable to journalism, but for a long time none of these connec-
tions were made. More recently, database researchers brainstormed
ways to contribute to journalism and started to draw these con-
nections [9] [10] [12], building on work about parametric query
optimization [3]. They devised a model whereby they argued that
any claim made in journalism is equivalent to levying a query with
a certain set of parameters on a database. So, to check how well a
claim holds up to a variety of query parameters, an analyst would
run query perturbation, shedding light on how sensitive the re-
sult is to the parameters. In actuality, however, such an idea was
computationally infeasible on its own, and thus a segment of the
community set out to build a system with enough improvements
and optimizations on the naive idea of doing a parameter gridsearch.
Because gridsearch suffers from the curse of dimensionality [1],
this is especially pertinent with many query parameters. This work
resulted in systems that could efficiently and intelligently under-
stand how sensitive a query is to its parameters without a brute
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force search of the entire space. The advances they offer come in
the form of caching optimizations, parallelization, and intelligently
pruning aspects of the space that are unnecessary to search. On
top of that, they then established metrics and thresholds for deter-
mining the strength and reasonableness of a claim [12]. However,
all this work, including the optimizations, only considers a large
distributed system.

The Perada system is built on top of Spark, Redis, SQL and
Python. Their system is highly distributed as running perturba-
tions are, as they say, "embarassingly parallel” As such, we drew
inspiration from the original system for our in-memory version, and
brought multiprocessing into our system, to gain runtime speed in
a one computer situation. Perada also describes a caching strategy,
but applies this only to post-processing the results of the pertur-
bation, and do not consider how to cache the intermediate results
during the perturbation. We implement a caching strategy during
the perturbation itself, to make gains from already computed sub-
ranges of parameters being searched. The following section will
describe our approach in more detail.

2.2 Pandas

The pertinent question of whether to use Pandas or SQL is whether
a DataFrame abstraction is more productive than a SQL abstraction
from the standpoint of journalists and analysts. There are two main
reasons that it often is. One is the domain knowledge required to
operate SQL as opposed to using Pandas framework. The other,
more importantly, is that going from raw data all the way to data
visualization in one code base is convenient using Pandas. The
present implementation of Perada [2] is built on top of SQL and thus
journalists need to be able to write complex SQL queries in order
to use it effectively. In this paper we present query perturbation as
a functionality of the Pandas framework.

Robbert van der Gugten [11] talks about key optimization points
that are relevant to our implementation. Index optimization is very
helpful for fast merging or joining tables, which is a frequently used
operation in the given scenario. Also, vectorized operations provide
speedups as opposed to an iterative approach. Lastly, executing filter
operations as early as possible, especially during multiple sequences
of operations, can provide a significant performance improvement.
An example is executing a filter after an inner join between two
tables which would cause performance degradation. Finally, the
presentation by McKinney discusses important data structures and
more technical details used to achieve speedups in Pandas [8]. No
existing Pandas functions allow for query perturbation on Pandas’
dataframes.

2.3 Memoization and Caching in Queries

Caching, and more specifically, memoization have been common
techniques across computing to attain faster processing times by
avoiding re-computation of already calculated results. Memoization
is the re-use of already computed function calls when the same
inputs are provided. In the database literature, Hellerstein et. al.
examined hybrid caching schemes against the traditional and widely
used sorting technique in Object-Relational and Object-Oriented
database management systems where users are allowed to invoke
expensive user defined methods [5]. Their analysis of the costs of
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user defined functions and review of main memory caching systems
was instrumental in helping us test our caching techniques, even if
we rarely exceed the main memory for our system.

2.4 Map Reduce

The advantages of caching requires a later reduction ability to be
able to reuse previous computations. The MapReduce framework of-
fered lessons in parallelization as well as reduction [4]. MapReduce
was a breakthrough paper pioneering re-imagining computation of
large workloads on a parallel system architecture. It introduces a
new programming model defining two functions map and reduce.
The map function converts the input key-value pairs to an inter-
mediate value and the reduce function merges all the intermediate
values of a given intermediate key to output the final result. This
is quite similar to the steps that query perturbation goes through.
We take inspiration from the MapReduce programming model in
adopting the mapping of input to intermediate values and reducing
the intermediate values associated with its respective keys into the
final output, with a carry variable to allow for weighting in the
reduction.

3 APPROACH OVERVIEW

Query perturbation solves the instance of one query template and
many different parameter settings that are needed to achieve a
desired calculation or outcome. Perturbation analysis has two main
steps: evaluating the perturbation and then analyzing the result
set. As such, to borrow some language from Perada, there exists a
query template q, a database on which it acts, D, and a combination
of parameters drawn from a larger parameter space of ranges of
those parameters to cycle through (p). Evaluating the query can be
thought of as a function: q(p). If two parameters vary with ten values
each, the parameter space has hundred possible combinations to
search. The inputs to Perada or our system, Pert-Q-Pan, defined
by the user, are the database, D, in question, the query template, q,
the parameters to search, and the ranges to search over, P. Finally,
once the results of the query are calculated, q(p), to obtain any
interesting results, a post-processing function X operates on the
result set to obtain a final value that one would care about.

In Perada, cunits, or pieces of work are distributed amongst
a large system that uses Spark to run all the perturbations. The
intermediate results are sent to a master than then does the final
"reduction” or post processing function X.

Two types of caching are used. The first is a global key value
cache, built on top of Redis, that is shared by all cunit workers
that are operating on a single unit of work. This memoization
cache allows for a lookup of the exact keys that are currently being
computed in case there was a failure or a duplication of assigned
inputs to the distributed workers. This cache is not used during the
main perturbation to speed up any computations by using partially
pre-computed results, which is the novel improvement our system
offers. Instead, this cache is used for helping calculate the final
results of the post-processing function X. For Perada, it also aids in
pruning unnecessary computations from occurring if the system
is certain that in the post-processing of the intermediate results,
the computation would not, for example, make the top ten values

Conference’17, July 2017, Washington, DC, USA

if that is what the end user is interested in. A second local SyncSql
cache is used for more robust pruning.

We present a Pandas compatible API that allows the below exam-
ple discussed in 3.1 to be trivial to locate for a user. While Perada
is implemented on Spark using Python and SQL, we implemented
a Perada-like system that takes in a query and a set of parameters,
and issues native Pandas methods. Our system, Pert-Q-pan, which
stands for Perturbed Queries in Pandas, allows for query pertur-
bation to check the robustness of a claim made on a database, or
to locate interesting values. We implement multiprocessing and
caching to improve the performance of the system and hypothesize
that these two improvements can significantly improve run-time.
Indeed, we find that they do, but that there are trade-offs when
using both.

3.1 A Real World Example

In reality, many journalistic investigative articles can be framed as
the above describes: queries with perturbed parameters. For exam-
ple, an article recently published by The Markup, titled "Facebook
Charged Biden a Higher Price Than Trump for Campaign Ads,'
isolates a two month period during which the average cost of an
ad on Facebook for presidential nominee Biden was significantly
higher than that for Trump. It reads, "The difference was especially
stark in advertisements aimed primarily at Facebook users in swing
states in July and August, where Biden’s campaign paid an aver-
age of $34.34 per 1,000 views, more than double Trump’s average
of $16.55." [7]. This can essentially be re-framed as a query on a
database, one where the parameters are searched for to produce
interesting results, which in this case is a stark difference paid by
two different campaigns during a comparable time period.

One plausible technique to isolate such an interesting claim
would be to consider graphing the values in question and guessing
at parameter values that would produce the max difference between
the candidates to illustrate the argument of the article that Facebook
is charging two candidates drastically different amounts. Since the
cost of an ad varied over time across different states for different
candidates with different numbers of target audience members
reached, identifying a particular claim like this is non-trivial. As
provided by the article, the entire analysis was done in Pandas, but
it is unclear how the start and end dates were selected. To re-frame
in perturbation terms, the parameters varied were a start date and
a length of time to consider. The parameterized query template
would calculate the mean cost value for both Biden and Trump ads
between the start date and the length added to the start date, and
take the difference between the two. The post-processing query, X,
would look for the maximum value from the result set of all the
differences calculated for all combinations of start date and length.

3.2 Multiprocessing

The workloads described are easily parallel. Each unit of work,
which is one combination of parameter values out of the parameter
space, can be run in a separate process. The same code is run, just
with different inputs. Setting up the multiprocessing does take
some overhead, and therefore it may cause diminishing returns
when upping the parallelizations if the overhead time dominates
the run time. For example, a variety of pre-filtering techniques may
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dominate the runtime and might be chosen to be performed before
the dataset is handed to the child processes. The output from the
parallelization is all of the outputs from all the jobs, which would
then be handed over to the post-processing function X to calculate
the final result.

Pert-Q-Pan does have options to filter out the columns and rows
that are not applicable to the perturbation in question, and these
have differing impacts on the runtime as discussed in the experi-
ments section.

Perada describes one multiprocessing optimization which they
term grouping. Grouping refers to the process of dividing data
into groups for efficient evaluation of perturbation [2]. It may, for
example, be worthwhile to hand every child process a grouped
dataset where one parameter value is fixed, and the whole range
of perturbations for the other parameter are considered to avoid
having to filter the original dataset in a variety of ways, reducing
the amount of total jobs required and operating on the same subset
of data for the life of a subprocess. While we do not currently take
advantage of dividing the work in this way, it would be possible to
explore such an optimization in the future.

3.3 Caching to Reduce Computation Time

Perada does implement caching but does so only as a tool for post-
processing on the result set, as mentioned above.

In contrast with that, we decided to implement a form of memo-
ization in the main processing of the query perturbation. By defin-
ing a computation in terms of sub groups that can be combined,
we can combine sub sections of the space to form larger sections,
saving computation time at the expense of memory.

It is worth noting that while inserts into the cache should be
idempotent, in our situation this is not really a concern as every
unit of work submitted to the executor will never have the exact
same parameter inputs.

One problem with the above is that since we are blind to the
actual parameters and their values, and treat them as arbitrary
objects, we require the user to specify an optional overlap function
that helps us key the cache, and the query template itself must
handle a reduction like behavior by handling previous results, and
a carry variable that helps the user weight the previous result in
the final combined result with the current computation. This does
introduce some more complexity on the part of the user, but the
trade-off is potentially very advantageous in run time.

4 TECHNICAL DETAILS

The user must specify the parameters, the ranges, the query tem-
plate and then run the perturb function on the query object. The
main point of entry for a user is the pQuery object, off which
the perturb method can be activated. The perturb method handles
kicking off the execution and returning the results object.

The pQuery object, which stands for perturbed query, and the
pParam object, which stands for perturbed parameters, are inter-
faces that are defined by us that will aid users in building an exe-
cutable query. First, a user specifies the parameters of interest.

The pParam class looks like the following:

class pParam:
# Dictionary with the parameters to search
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# and the ranges to search in
param_name_to_range = {}

# Add a search space to a given parameter name
def add_param(param:str, range:Object)

And can be used in the following way:

params = pParam()\
.add_param("start_date",

.add_param("length", range(1,

all_dates)\
30))

Here, the parameter name is added along with the ranges to
search. The pQuery object class looks like the following:

class pQuery:
# To define a pQuery object, the user must
# provide a dataframe, the query template,
# q, and the post-processing function X.
def __init__(df: Pandas.DataFrame,
query_template: Callable,
agg_func: Callable)

To take advantage of the ability to optimize
to avoid recomputing outputs for segments of
inputs when we have already computed segments
that makeup a larger segment,
overlap function

def add_overlap_fn(
overlap_fn(xparameters):Callable)

users define an
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# To kick of the actual execution of
# everything specified
def perturb(params: pParamObject)

# This is the function that is submitted
# to the multiprocessor for running each
# job with the specified combination of
# parameter inputs to try in the query
# template
def run(query_fn: Callable,
df: Pandas.Dataframe,
shared_cache: Manager .dict,
combo: Tuple)

The run function is called from the perturb function. The perturb
function traverses the ranges of the parameters and creates a tuple
for every set of combinations of the parameter inputs. Each specific
combination of parameter values is submitted to the multiprocessor
along with the dataframe to act on, the query template, and the
shared cache, if one is being used. The shared cache is ensured
to be a shared piece of memory between the processes through
the Manager class, which grants read and write access to all child
processes.

It is important to note that processes and threads are different in
Python. Multithreading in Python allows computation to progress
in separate threads, but only one CPU process is technically oper-
ating at any given time. Thus, we opted to use multiprocessing to
truly parallelize the workload, and have multiple CPU cores that are

-> pResultObject
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continuously making progress at the same time, with a maximum
number of available processes calculated by the pQuery object. The
managing of shared memory needs to be handled carefully, and
thus we turn to Python’s builtin Manager class to handle caching
across processes. But, everything else does not rely on sharing any
other shared writable data, only reading.

This can be used in the following way:

result = pQuery(df, query_template_2, max)\
.add_overlap_function(overlap_fn)\
.perturb(params)

The following is an example query template function, which
should take a few required parameters if the caching optimization
is to be taken advantage of:

def query_template_2(df: Pandas.DataFrame,
params_tuple: Tuple,
previous_params: Tuple=None,
previous_result: Tuple=None,

carry_variable: int=None):

The downside of implementing caching was that some additional
considerations must be undertaken by the user. They must handle
previous specific param input values, the result of the query tem-
plate on those values, and any carry variable that is required for
weighting the previous result. For example, if we are trying to find
the mean value of a column, it would be possible to cache previous
mean values for a subset of that column that is smaller than the
current consideration of the range. If so, we can use the knowledge
that the previous calculation for the mean consisted of 11 rows
(the carry variable), and then calculate the mean on any remaining
rows that weren’t considered in the cached version. Say we have 3
rows that weren’t previously considered. We could calculate a mean
on those three rows, and weight that means by 3/14, weight the
previous mean by 11/14. The previous result gives us the previous
mean, the carry variable tells us how many rows were considered
earlier to aid in weighting, and the previous params help us figure
out which remaining rows have not been processed. Much of this
is inspired by the MapReduce foundational paper, which describes
in detail how to carry out reductions such as these [4].

It will also be beneficial to make optimizations with regards
to the intermediate tables that are calculated and possibly stored.
Depending on the necessary computations, it may be more efficient
to create a separate materialized view or intermediate table that is
stored to do the perturbation on depending on what the query looks
like to keep computation numbers to a minimum. As we can relate
this to conducting a grid search, while holding any set of parameters
constant, it would likely be beneficial to conduct computations
against a Pandas dataframe where only a subset of the data is held.
Advanced users will be able to aid optimization by specifying any
queries they believe would be an adequate intermediate table.

The biggest problem in not being able to achieve sufficient re-
sults or any of these executions not being possible is how long
the computation time would take, which is based on the factor of
how many computations need to run and the size of the dataset.
The limited computational power of a single machine, as well as
the limited operating memory, may make certain perturbations
unfeasible, in which case users should turn to the Perada system.
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5 EXPERIMENTS

Our experiments focus on toggling the multiprocessing and caching
to understand how they affect the run-time. In the same way that
the gains of the Perada paper came from the optimizations they
had to offer, with the optimizations we are implementing to the
in-memory system, we hypothesized that we would be able to
outperform a simple brute-force grid-search of the parameter space
on a given query. Thus, our main bench-marking occurs against
brute-force searching of a parameter space. We utilize a workload of
a varying specified number of rows and columns, which a variable
parameter search space. The workloads are all randomly generated
datasets with a specific format. We vary the caching, parallelism,
and run all combinations of the parameter space. The following
experiments entail the findings.

Time Vs. Parameter Search Space with and without
Multiprocessing

== Time with Multiprocessing, Prefiltered == Time Serial, Prefiltered
== Time Serial

Time Multiprocessing

125

100

75

50

=

5000 10000 15000 20000 25000 30000

25

Parameter Search Space

Figure 1: Run times (seconds) versus the parameter search
space (number of combinations of specific parameter values
to try) for different environment setups. We toggle the mul-
tiprocessing and whether or not the dataset filtering is occur-
ring in the main or child processes. Indeed, multiprocessing
is beneficial in terms of run time and this performance im-
provement is larger the larger the parameter search space
is.

5.1 Experiment 1: Varying Parameter Search
Space to Understand Multiprocessing Gains

The first experiment is devised to test how multiprocessing im-
proves runtime as the parameter search space is increased. As
predicted, multiprocessing does allow similar workloads to finish
faster that if they are done as one long serial process. Multiprocess-
ing in this experiment means utilizing all available 8 processes that
the single machine we tested on was able to run at a time.

The fake dataset used for all the experiments was modelled after
the analysis from The Markup piece on Trump and Biden Ad prices
that was discussed earlier. The two parameters being ranged were
the start date and a length of time, and the value being considered
was either the maximum average price paid by a candidate or the
maximum difference of the averages paid by the two candidates.
The dataset contained 5 columns, and a variable number of rows.
In Figure 1, 10,000 rows was chosen as a believable possible size for
such a dataset.
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The ranges of these two parameters were increased for each run
to build the above results. The four different environments are mul-
tiprocessing, multiprocessing with pre-filtering, serial-processing
and serial-processing with pre-filtering.

The term pre-filtering refers to reducing dimensions of the pa-
rameter space. This includes removing columns and rows that do
not contribute to the computation of the result. Prefiltering indi-
cates that filtering down to the portion of data selected for this
computation was done in the main process, and then this reduced
dataframe is passed to the child processes.

From the graph it is evident that multiprocessing does produce a
win for run time. Pre-filtering the dataset causes the whole run time
to take longer as the filtering causes a large amount of overhead in
the main thread, but we suspect that its memory footprint would
be lower, which could potentially be desired or advantageous. Fu-
ture experiments could investigate the memory footprint of such
choices.

5.2 Experiment 2: Understanding the Influence
of the Cache

Similar to former experiment, we ran our system in different envi-
ronment settings and noted the run-time. We toggle both the cache
and the multiprocessing. Again, multiprocessing in this case is the
maximum parallelization possible of 8 processes. The four settings
are multiprocessing with cache, multiprocessing without the cache,
serial execution with the cache, and serial execution without the
cache. 10,000 rows were used, and a 2345 search space where 20
values was the range of the length and the start date varied from
January 1 to December 1.

The built in Pandas mean function, which was being used by
the user defined query template, is a hyper-optimized function that
has a low computational complexity. In order to simulate more
computationally complex user defined functions, we introduced
a sleep time of a constant multiplied by the length of the input
dataset raised to some exponent, e. The value of e was varied in the
experiments. This helps us model potentially more complex user
defined functions that would take an increasingly longer period of
time to run, and thus we can see more performance improvement
from the cache. More complex user defined functions benefit more
from caching, which is understandable given what we can learn
from Hellerstein et. al [5].

It can be deduced from the values in Table 1 and 2 that for this
workload, caching gives us a performance improvement, albeit a
different magnitude in the serial and multiprocessing environments.
This difference in performance improvement can be reasoned that
serial execution has a greater number of overlapping computations
since computations are not potentially happening at the same time
when they could have been reused. The specified overlap func-
tion, which is what is specified to allow Pert-Q-Pan to know what
to retrieve from the cache, was looking for any entries that had
the same start date, and a length that was less than the current
computation. When the system was running in the multiprocess
environment, the possible value that a current computation could
have reused was being processed in parallel, and hence was not
available yet for reuse. If we have unlimited CPU cores, we could
process the entire perturbation space in parallel, but ultimately do
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a lot of excess computation. This highlights the trade off of caching
and multiprocessing.

One possible modification would be to schedule the specific
parameter values, or pieces of work that need to be computed, opti-
mized for cache hits when queuing up the pieces of work assigned
to the multiprocessor.

5.3 Experiment 3: Varying the parallelism of
the Multiprocessor

Table 3 shows the degree to which the amount of parallelization
improves runtime. The number of processes allowed to run was var-
ied, with 100,000 rows, 90 values possible for the length parameter,
and a total search space of 10,050 possible combinations. As we can
see, the biggest wins in the case come from just moving from one to
two processes, and there are diminishing returns after that. That is
because Python has significant overhead for multiprocessing, and
some shared resources could not be fully parallelized, but perhaps
this could be improved in the future while still supporting the same
workloads.

5.4 Experiment 4: Caching in Post Processing

Execution time of dominance count query +/- memoization

— wilth memuoization
without memoization

200

150

100

Number of values in the perturbation result

: ! N ' ' ' ' r T
[i] 5000 10000 15000 20000 25000 30000 35000 40000
Time taken fer computation of Deminance count query on result

Figure 2: Runtime of caching versus not caching in post pro-
cessing.

This experiment is devised to check the performance of post
processing with and without caching. Caching here helps to avoid
re-computation of queries that have already been computed before.
In this paper we have implemented dominance count on the per-
turbation result. Several useful functions like ranking, clustering
and many more can be implemented on the perturbation result. It
can be deduced from Figure (2) that for very few values (<5000)
caching doesn’t provide any speed-ups. But for more than 25000
values, there is a significant difference in the computation time of
post-processing query.
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Exponente No Cache, Multiprocessing Cache, Multiprocessing Percent Improvement
0 6.201 5.273 14.97

1 5.425 5.151 5.05
1.25 6.517 6.441 1.17
1.5 10.716 9.928 7.35
1.75 27.71 26.013 6.12
1.9 56.252 50.512 10.20
2 92.711 79.027 14.76
2.1 150.415 110.464 26.56
2.15 199.793 142.274 28.79
2.2 271.692 175.849 35.28
2.3 458.008 269.64 41.13

Table 1: This table indicates the improvement our caching offers, while multiprocessing is turned on. Time is in seconds. The
exponent is a variable parameter that indicates or models how time intensive any UDF is. The larger the exponent, the more
time intensive the modelled UDF is. As we can see, caching partial computed values offers decent performance speed ups,
though the speed ups at low values for e are inconsistent since the overhead of the runs likely dominates the run time.

Exponent e

No Cache, Serial

Cache, Serial

Percent Improvement

0 6.541 10.921 -66.96
1 13.268 12.712 4.19
1.25 24.653 15.924 35.41
1.5 61.887 22.806 63.15
1.75 204.681 35.747 82.54
1.9 416.466 49.598 88.09
2 675.801 62.967 90.68
2.1 1217.815 86.474 92.90
2.15 1567.611 95.833 93.89
2.2 - 110.178 -
23 - 154.512 -

Table 2: This table indicates the improvement our caching offers, while multiprocessing is turned off. Time is in seconds. The
exponent is a variable parameter that indicates or models how time intensive any UDF is. The larger the exponent, the more
time intensive the modelled UDF is. As we can see, caching partial computed values offers incredible performance speed ups
in the serial case, though the speed ups at low values for e are inconsistent since the overhead of the runs likely dominates
the run time. In the serial case, the previous computed values are placed into the cache and then immediately used by the next
computation, so we see more improvement in the serial case over the multiprocessing case. This highlights the trade off of
caching and multiprocessing.

Multiprocessing Time, Cache off Time, Cache on

1 98.917 113.26
2 61.541 71.131
3 59.866 62.797
4 61.431 66.59
5 62.439 66.078
6 61.063 70.579
7 60.865 67.048
8 66.189 64.049

Table 3: Runtimes, in seconds, while varying the amount of parallelization possible with the cache turned off and on.

5.5 Comparing the usage of Perturbation
Analysis using Pandas and SQL
The framework of Perada has not been made public. Hence here

we draw the comparison between SyncSQL which is also built on
top of SQL as mentioned in [2] and Pert-Q-Pan.
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Below is the implementation in both Pandas and SyncSQL for
the query perturbation problem statement as follows:

There are two tables containing information about baseball
games of players across seasons. The first table is PLAYER_INFO
which contains information about the player like age, attributes,
player_ID, and others. The second table is SCORE_STATS that has
player_ID mapped to the statistics of games that a specific player P
has played across different seasons(year). Now the task is to get the
hits and home runs of a player averaged over a given number of
seasons(between start_year and end_year). Once the result of the
task is attained, the dominance count of how many more players
have home-runs and hits greater than the given player P between
start_year and end_year is calculated.

Pandas implementation

params = pParam()

.addParam('season', range(9,14))

presult = pQuery(df)
.add_filter_stage(["hits","home-runs"])
.add_groupby_stage(["player_name"])
.add_agg_stage(avg,["hits","home-runs"])
.perturb(param)

domcount = presult

.domCount ({"hits":presult.x, "home-runs":presult.y})

SyncSQL implementation

DECLARE @x as INT, @y AS INT

SET @x,@y = SELECT AVG(hits), AVG(home-runs)

FROM (PLAYER_INFO JOIN SCORE_STATS ON PLAYER_ID)
WHERE SEASON >= start_year AND SEASON <= end_year
GROUP_BY PLAYER_NAME

SELECT MAX( domcount + (CASE WHEN hits > @x

OR home-runs > @y THEN 1 ELSE @)) FROM cache
WHERE hits >= @x AND home-runs >= Qy;

Comparing the above implementations of query perturbation
in Pandas and SyncSQL, it is evident that the former offers a very
simplistic framework for usage. The length of the SQL query is
long, and the knowledge of SQL required to write the SQL query
is cumbersome. As opposed to the SQL counterpart, Pandas imple-
mentation offers an easy to use API interface with method chaining.
People with minimal programming experience and coding knowl-
edge can delve quickly into getting insights into the data rather
than on the implementation of the perturbation.

6 FUTURE WORK

As mentioned earlier, grouping the parameters before handing
them off to the multiprocessor would likely improve runtimes,
especially when an expensive overhead calculation is necessary
on the grouped parameter. This would be a natural extension of
the Pert-Q-Pan system, and it would be interesting to explore its
effects. The other area where interesting developments could be
pursued is in instituting a lineage capture during the processing, but
more importantly, the post-processing part of the perturbation. This
would help inform what computations to prune or cancel/ignore in
the main phase of the perturbation. This would help cut down on

Name, et al.

the number of jobs that would need to be run, as some parts of the
search space could easily be ignored if we know it will not end up in
the final result from the post-processing query. For example, if we
are looking for the top ten results, if we know that at a particular
value of parameter A, there exists no value of parameter B that will
allow the result to make it into the top ten, we can simply avoid
calculating any of those jobs in that part of the parameter search
space.

One other optimization we can take advantage of is to utilize our
knowledge about some of the slower aspects of Pandas that a typical
user may not know and rewrite the users’ code to be more efficient
when possible. For example, Pandas’ apply function is notoriously
slow, and in many cases can be replaced with vectorization [5]. In
the Facebook Ads story, there are several points at which the author
uses the apply function to map over or filter a column, which could
be rewritten given our knowledge of Pandas.

Additionally, we currently have no support for failures since fail-
ure is unlikely in single machine operations. Still, if failure or errors
occur, the whole process must be restarted from the beginning. A
checkpoint system could be implemented to allow for recovery to
prevent having to start from the beginning again. Finally, an inter-
esting variation on the caching strategy might involve randomly
sampling from the parameter space when assigning work to the
multiple processes, to increase the chances of usable pre-computed
chunks from the cache.

7 CONCLUSIONS

Query perturbation is a unique novel tool that has much to offer
data journalists. By allowing journalists to check the robustness of
claims, and discover interesting data points, new stories are made
possible. However, the current technology is out of reach for most
journalists that do their data analysis work largely in Pandas.

We introduce Pert-Q-Pan, an in-memory Pandas compatible API
for conducting query perturbation. We optimize around multipro-
cessing capabilities of Python, memoization for caching, and discuss
some possible tradeoffs to consider when turning both of these op-
timizations on. The simplistic API and examples allow any data
journalist to run query perturbation on their single machine, in
memory dataset.
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